1,1 ad modum current in coronamCladding Layer
Current(A) | DECH (de Fusion)(mm) | FLoor altitudo(mm) | latitudo(mm) |
70 | 0,19 | 4.26 | 16.41 |
80 | 0,35 | 4.07 | 17.08 |
90 | 0,88 | 3.43 | 17.48 |
C | 1.03 | 2.73 | 17.58 |
CX | 1,25 | 2.65 | 18.14 |
Table 3,1 Geometria Crucis-sectione Cladding Layer cum diversis excursus

Sicut current crescit, profundum et latitudinem Cladding layer crescit et layer altitudo decrescit. This is due to the increase in current, the heat generated will not only melt the cladding metal, but also part of the substrate melting, cladding and substrate mixing occurs, so that the cladding layer as a whole subsidence, resulting in an increase in the depth of fusion, the layer height decreases; Et auget current, faciens plasma arcus est crassum, crescere temperatus range de calor fontem, in lacus in subiecto, in facultatem est fortior, ita latitudo lacus crescit.
1,2 et effectus estLIBELLUSCeleritate in CUMATIUM COLDDING SPINCULTUS
Celeritas WELDING(mm / s) | DECH (de Fusion)(mm) | FLoor altitudo(mm) | latitudo(mm) |
4 | 1.17 | 4.34 | 17.61 |
5 | 1.06 | 2.73 | 17.58 |
6 | 0,35 | 2.61 | 16.96 |
7 | 0,13 | 2.55 | 15.01 |
8 | - | - | - |
Mensa 3.2 Cross-Sectional Geometria de fusilia Cladding layers cum diversis welding celeritatum
Cum incremento Welding celeritate, profundum fusione ex Cladding layer decrescit, accumsan altitudo ostendit primum acri decrescit et tardius facti minor, latitudo decrescit. Cum autem in Welding celeritate est IV mm / s, cum incremento ex Cladding metallum ad quaedam quatenus, profundum fusione est 1,17 mm, in hoc tempore, in piget per unitas in altitudinem layer in pendet, in altitudinem layer altitudinem 4,34 mm; Et Welding celeritate crescit ad V mm / s, initus initus per unitatis longitudinem, moles filum pascens reducuntur, ita profundum fusione, layer altitudo, latitudo reducuntur; Si ad augendam celeritate celeritate, ut supra, ut supra, calor input est insufficiens in hoc tempore, tantum parva pars basi materia non conflandum, fusione primo et tardius facti minor, latitudo reducitur. Si ad augendam celeritate celeritate, ut supra, ut supra, calor initus in hoc tempus est insufficiens, tantum parva pars basi materia potest liquefi, exigit in altitudine, cum layer altitudo reductionem minus.
1.3 Influence of filum pascens celeritas in coronam in Cladding Layer
Filum-pascens spped(mm / s) | DECH (de Fusion)(mm) | FLoor altitudo(mm) | latitudo(mm) |
40 | 1.43 | 2,24 | 19.91 |
50 | 1,25 | 2.56 | 18.86 |
60 | 1.03 | 2.73 | 17.58 |
70 | 0,71 | 3.46 | 15.82 |
80 | 0.16 | 5.16 | 14.20 |
Taberna 3,3 Geometrica dimensiones crucis-sectionem ad Cladding iacuit cum diversis filum pascens celeritates.
Sicut filum feed celeritas crescit profundum et latitudinem Cladding layer decrescit et layer altitudo augetur. This is due to the fact that when the current and welding speed are certain, the heat input per unit length is certain, and with the increase of wire feeding speed, the amount of filler wire per unit length is increased, and the cladding metal needs to absorb more heat, and when the heat input is unable to completely melt the whole cladding layer, the base material part is less melted, so the depth of melting decreases, and the height of the layer increases, and the Diffusa facultatem ad Cladding metallum proxima ad basis materiale deteriorat, ita latitudo decrescit cursim. Et width erit decrementum cursim.
In Summary Plasma Plasma Cladding MMCCV Duplex Aliquam Steel Steel Efficens Processus parametri range a: current XC A CX A, Welding Volo IV mm / s ~ VI mm / s ~ LXX mm / s, in I ~ gas fluunt 1.5 l / min.
II Ex responso superficies modum fusione Cladding Layer formatam processus parametri Optimization
Response surface method (Response surface method, RSM) is a combination of experimental design and statistical techniques of optimization methods, the analysis of test data, can be derived from the impact factor and the response value of the fitting function and three-dimensional surface map, can intuitively reflect the impact factor and the response value of the relationship between the actual test has a predictive, optimization role. Based on the above reasons, the selection of RSM in the central composite design (Central composite design, CCD) to develop process optimization program, to explore the current, welding speed, wire feeding speed and the fusion cladding layer dilution rate, aspect ratio of the relationship between the current, welding speed, wire feeding speed and the fusion cladding layer dilution rate, and mathematical modeling, derived from the process parameters and the Dilution rate, aspect ratio ad munus, ad consequi praedictionem Fusione Cladding layer qualitas.
2.1 influentia processus parametri in dilutionis rate de Cladding layer.
Mensa 3.8 Processus Optimization Results and verificationem
Group | X1(A) | X2(mm · s-1) | X3(mm · s-1) | Dilution Ratio(%) | Ratio aspect |
PRAEDICTIO | 99 | 6 | 50 | 14.8 | 4.36 |
Test Group I | 99 | 6 | 50 | 13,9 | 4.13 |
Test Group II | 99 | 6 | 50 | 15,5 | 4.56 |
Test Group III | 99 | 6 | 50 | 14.3 | 4.27 |
Mediocris error | 2.9 | 2.3 |
(PTA Welding per Shanghai Duomu)
Figure 3.16 Optimal Processus parametri test eventus (a) test Group I; (B) test coetus II; (C) Test Group III
High-qualis Cladding layer quaerit habere parva mixtura rate et magnum rationem. Optimal processus parametri sunt: current XCIX a, Welding celeritate VI mm-s-I, filum pascens celeritas L mm-s-I. In average MIXTUER Rate de Cladding Layer paratus sub meliorem processus est de 14.6%, et mediocris aspect Ratio est 4,33, et in mediocris error sit minus quam V%, quod indicat quod est bonum, quod est bonum exiguam.
Post tempus: Jan-31-2024